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Automatic identification of recombination events in viruses
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Abstract. Viruses undergo change affecting their genome by several mechanisms, including
point mutation and recombination. With the availability of large amounts of genome sequences
and the implementation of genomic surveillance systems, the need for light-weight automatic
pipelines surges. This work describes our RecombinHunt method, which has been extensively
applied to the context of the SARS-CoV-2 pandemic. As a novel contribution, we observe
the method applied to Influenza A viruses, where the relevance of recombination is unknown.
Given the segmented structure of Influenza A genomes, most of the works on Influenza A con-
centrate on reassortments, in particular as a mechanism for facilitating inter-species spillovers.
However, in this paper, we also show the existence of potential intra-segment recombinations;
the relevance of recombination events in Influenza A viruses remains to be assessed, both quan-
titatively and in terms of impact.

1 Introduction
Recombination is an important mechanism of viral evolution; it requires co-circulation and

co-infection of two different viral strains in the same host. Recombinant viruses have clinical
and epidemiological relevance, as recombinant viruses were associated with enhanced virulence,
host immune evasion, and resistance to antivirals [1].

All phylogeny-based approaches assume that the shared history of pathogens, isolated from
different hosts, can be described by a branching phylogenetic tree. Recombination breaks this
assumption and impacts the application of phylogenetic methods for the reconstruction of chains
of contagion, viral evolution, and ultimately genomic surveillance of pathogens [2].

We developed RecombinHunt [3], an approach for effectively detecting recombinations,
relying exclusively on data-driven methods. RecombinHunt’s conceptual framework stems from
a long-lasting tradition of statistical methods for detecting intragenic recombination; it starts
from clusters of viral genomes in the form of a list of characterizing mutations.

Every target recombinant sequence is assessed by computing its similarity/dissimilarity with
existing lineages/groups of similar genome sequences. RecombinHunt does not reconstruct
phylogenies but computes the likelihood of a collection of pre-defined designations/lineages and
their combinations (recombinants) based on the mutations in the target sequence. RecombinHunt
identifies them as the “most likely candidates” for a recombinant sequence by using an algorithm
that explicitly accounts for the frequency of each distinct point mutation.

The method exploits previously existing classifications; we systematically applied it to
SARS-CoV-2 (exploiting the Pango lineage classification [4]) and demonstrated its use also in
monkeypox (using the classification in [5]). RecombinHunt is technically applicable to any kind
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of viral genome, provided that it can be represented as a genome sequence and a classification is
present. When these classifications do not exist, they can be fabricated, e.g., using HaploCoV [6],
a software framework for clustering viral sequences.

In this article, we show RecombinHunt at work on Influenza A virus; we analyzed data
derived from the hemagglutinin segment of genomes assigned to the 6B* clade family of H1N1.
Our dataset includes about 74K sequences retrieved from GISAID [7], collected until mid-2023;
here, we observed a few cases of recombination.

2 The RecombinHunt Method
RecombinHunt accepts a target genome sequence as input in the form of a list of nucleotide

mutations. Genome positions with a mutation in the target are denoted as the target mutations-
space. Candidate “donor” and “acceptor” lineages are defined based on the counts of their
mutations in the target mutations-space; we denote as “donor” the lineage with the higher count.
For every lineage, the union of the lineage and target mutations-space is denoted as extended
target space. A cumulative likelihood score is derived according to the following procedure: at
each position of the extended target space, we compute the logarithmic ratio (see Figure 1A)
between the frequency of the mutation in the lineage and in the complete collection of SARS-
CoV-2 genomes (stored in a pre-computed matrix, see Figure 1B). This score is added if the
mutation is shared by both the target and the lineage, whereas it is subtracted if the mutation is
observed in the lineage but not in the target.

In detail, the method works as follows. For a target input sequence, likelihood ratio values
are computed for all possible lineages and a ranking is prepared, see Figure 1C); the lineage
(termed L1) associated with the maximum value is assigned to the target. If L1 mutations-space
is similar to the target mutations-space (where similarity is assessed, for each virus, on the basis
of the size of the extended target space and on the global likelihood of mutations), then the target
is assigned to L1, and designed as non-recombinant; else, the target is designated as recombinant,
and L1 is designated as the candidate donor. Note that L1 covers the majority of the mutations
of the target, located in the genome segment that starts from one of the two ends (either 5’ or 3’)
– denoted as L1’s end – and reaches its maximum value at a position designated as max-L1 - see
Figure 1D where the likelihood trend for the range Rstart:end, peaking in max-L1 is depicted.

Upon the identification of a candidate donor, the one-breakpoint model (1BP) and the two-
breakpoint model (2BP) are compared. Given the focus of this paper on influenza A viruses,
examples of 1BP and 2BP refer to two recombination events for Influenza A, respectively shown
in Figure 2, panels A and B. Figure 2A) refers to a viral sequence from Bosnia-Herzegovina
sequenced in 2019. Note that the extended mutation space amounts to 247 mutations, and that
the candidate donor (lineage 6B.1A.2) is recognized starting from the 5’ end. The blue line
indicates the likelihood ratio value for the “donor” lineage L1, 6B.1A.7, whose value grows from
coordinate 247 (the 3’ end) up to coordinate max-L1 = 32, reaching its maximum value. Then
the target becomes dissimilar from L1 (it drops), the sequence is designated as recombinant, and
the search for an “acceptor” lineage starts.

In the 1BP model, we search for a lineage L2, starting at the opposite end of the genome,
and select the L2 lineage with the maximum likelihood ratio value (max-L2), designated as
the candidate acceptor. The interval between coordinates max-L1 and max-L2 defines the
breakpoint range, which is then reduced to a single position. In the example, the 6B.1A.2 lineage
is recognized as “acceptor”, as the orange likelihood curve starting from the 5’ end grows and
reaches its maximum value at coordinate max-L2 = 31.

In the 2BP model, the candidate donor L1 lineage is also assigned to the opposite end of the
genome; we look for the point where L1opp’s likelihood ratio is maximum, denoted as max-L1opp.
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Figure 1: Overview of the computational structures in the RecombinHunt method, including panels A)
target-lineage likelihood formula, B) mutation-lineage probability matrix, C) lineage candidate ranking, and
D) graphical likelihood trend.

A candidate acceptor L2 lineage is searched in the space between max-L1opp and max-L1; the
lineage L2 with the maximum likelihood ratio is selected, then two ‘breakpoint ranges’ are
determined, which are then reduced to a single position. Figure 2B) refers to a viral sequence
from Beijing, sequenced in 2018; the extended mutation space amounts to 244 mutations. Also in
this case, the “donor” lineage L1 (6B.1A.7) is recognized starting from the 3’ end; the likelihood
value grows up to coordinate max-L1 = 66. By postulating the 2BP model, L1 is also assigned to
the 5’ end, and the likelihood value grows up to the max-L1opp = 17 coordinate. The “acceptor”
sequence is searched in the 18-65 coordinate interval, and in particular, L2 is assigned to the
B6.1A.5 lineage.

3 A Summary of SARS-CoV-2 and Monkeypox Results
Our method was executed on 51 of the 57 lineages designated as recombinant by Pango at

the end of the COVID-19 pandemic emergency (April 2023). Two lineages were excluded as
they had three breakpoints; other four lineages were disregarded since the defining Pango issue
was unclear/controversial. The “ground truth”, i.e., the description of the recombinant lineage in
terms of donor, acceptor, and breakpoints, was reconstructed directly from the corresponding
Pango designation issues [8]. RecombinHunt results were in complete agreement with the
ground truth for 40 recombinant lineages (37 with one breakpoint and 3 with two breakpoint
recombinations).

The remaining 11 lineages – which did not fully agree with the Pango designation – are
stratified into three conceptually distinct groups: G1, G2, and G3. Six lineages in group G1 are
not flagged as recombinant by RecombinHunt. For all these lineages, recombination is supported
only by one or two mutations, over an average of 67 mutations considered in the respective
consensus-genome (i.e., a lineage’s ideal sequence, reconstructed as the mutations shared by
>75% genomes of the lineage). In two lineages of group G2, RecombinHunt identified the
same parent lineages, but additional breakpoints (2BP w.r.t. 1BP) compared with the solutions
reported by the ground truth. The remaining three cases of group G3 are controversial; they are
discussed in depth in [3]. The small discrepancies observed in our analyses might not necessarily
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Figure 2: Recombinant sequences for Influenza A viruses. Panel A) illustrates a 1BP recombination, panel B)
illustrates a 2BP recombination.

reflect errors and could be suggestive of intra-lineage heterogeneity and/or microevolution in
some SARS-CoV-2 recombinant lineages.

Once applied to monkeypox, our method was able to replicate the classification of viral
sequences indicated as recombinant in [5] by using a sophisticated ad-hoc method based on
expert manual annotation. A large number of additional candidate recombinant genomes were
also detected, suggesting previously unreported recombination events in monkeypox.

4 Application on Influenza Type A Virus
In this article, we apply RecombinHunt to the Influenza Type A Virus, considering the

hemagglutinin segment from H1N1 genotypes (analysed in [9]). A classical letter on Nature [10]
posed a first baseline in this line of research. Later, Boni et al. [11] suggested that recombination
is lacking in human Influenza A Viruses, as other evolutionary mechanisms such as reassortment
are typically preferred. However, subsequent results [12] again challenged this position.

We used RecombinHunt to search for evidence. We employed 73,744 sequences from GISAID
collected from January 1st, 2007 to June 16th, 2023, divided into 15 clades (from the largely
prevalent 6B.1* family and 6B.2) or ‘unassigned’. Their sequence length is between 1690 nb and
1780 nb (99% sequences), average length of 1727 nb (standard dev. 34 nb), and mode of 1701
nb. Our dataset exhibited 8,923 unique mutations, with an average of mutations per sequence of
249 (standard dev. 37).

We indeed found some potentially recombinant HA segments. Based on the clades illustrated
in Table 1A), the five recombinant sequences indicated in Table 1B) were identified, composed
of two candidates, with 1BP or 2BP models. Sequences are identified by the collection location
and year.
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A) Clade Spread interval
6B.1A.5a.2a.1 2022-present
6B.1A.5a.1 2019-present
6B.1A.5a.2 2020-present
6B.1A.5a.2a 2020-present
6B.1A 2016-2019
6B.1A.5a 2018-2022
6B.1A.7 2018-2020
6B.1A.2 2018-2019
6B.1A.5b 2018-2020
6B.1A.5 2018
6B.1A.1 2017-2019
6B.2 2015-2017
6B.1A.3 2017-2018
6B.1 2015-2018
6B.1A.6 2018-2019

B) Accession ID Location Year Recombinant candidates
EPI ISL 1788918 Beijing 2018 6B.1A.7 + 6B.1A.5 + 6B.1A.7
EPI ISL 1255768 Brisbane 2018 6B.1A.1 + 6B.1A.7 + 6B.1A.1
EPI ISL 1583010 Bosnia/Herzegovina 2019 6B.1A.2 + 6B.1A.7
EPI ISL 1304355 Illinois 2018 6B.1A.1 + 6B.1A.5a + 6B.1A.1
EPI ISL 1545804 St. Kitts 2019 6B.1A.1 + 6B.1A.2 + 6B.1A.1

Table 1: Overview of H1N1 analysis, with A) clades and their period of spread, and B) specific sequences
recognized as recombinant by our approach using, respectively, two or three candidates.

5 Conclusion
RecombinHunt is highly computationally efficient: the evaluation of the SARS-CoV-2 re-

combinant cases takes about 13 minutes on the GISAID dataset (15M sequences) using a laptop.
The method is more accurate on large datasets, where classes are represented by a well-defined
set of sequences and are well-separated from each other in the mutations-space. However, this
does not prevent the application of RecombinHunt also to smaller datasets, with coarse-grained
classification (see monkeypox). As a consequence, RecombinHunt is applicable to several viral
pathogens, for which curated collections of genome sequences are available within Nextstrain
[13] and for which a structured nomenclature has been defined by the respective reference
community; these include, for example, dengue, RSV, Enterovirus D68, and West Nile virus.

In this work, we showed preliminary results of applying RecombinHunt to a dataset of H1N1
Influenza Type A viruses, useful to retarget an open research problem on whether this kind of
virus considers intra-segment recombination in addition to reassortment. In future developments,
we will test its use in integration with HaploCoV for viruses whose genome is expected to
recombine (e.g., Respiratory syncytial virus and Zika). We are also addressing the problem
of capturing viral reassortments with a data-driven approach, in particular by detecting macro-
changes in the viral Influenza A genome, including spillovers. Our systems contribute to genomic
surveillance at large, with automatic detection of potentially dangerous and sudden changes in
human health-threatening viruses.
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Studi di Milano, CUP G53D23006690001. PI A.B., co-PI M.C.

Availability of data and software code
The RecombinHunt updated software code is available at https://zenodo.org/records/

13349272. The analyzed Influenza Type A dataset is at https://doi.org/10.55876/gis8.
250512ny.

References
[1] Daniele Focosi, Fabrizio Maggi, Massimo Franchini, Scott McConnell, and Arturo Casadevall. Analysis of im-

mune escape variants from antibody-based therapeutics against COVID-19: a systematic review. International
journal of molecular sciences, 23(1):29, 2021.

[2] Yatish Turakhia, Bryan Thornlow, Angie Hinrichs, Jakob McBroome, Nicolas Ayala, Cheng Ye, Kyle Smith,
Nicola De Maio, David Haussler, Robert Lanfear, et al. Pandemic-scale phylogenomics reveals the SARS-
CoV-2 recombination landscape. Nature, 609(7929):994–997, 2022.

[3] Tommaso Alfonsi, Anna Bernasconi, Matteo Chiara, and Stefano Ceri. Data-driven recombination detection
in viral genomes. Nature Communications, 15(1):3313, 2024.
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